

广州市微生物研究所 GUANG ZHOU INSTITUTE OF MICROBIOLOGY

检测报告 TEST REPORT

Report Number

KJ20192583

Name of Sample

Pet deodorizer box

Applicant

Dongguan YX Pet Electronic Technology Co., Ltd.

TEST REPORT

Date Received: Nov. 20, 2019 Date Analyzed: Nov. 26, 2019

Name of Sample	Pet deodorizer box	Source of Sample	Delivery	
Applicant	Dongguan YX Pet Electronic Technology Co., Ltd.	Client	Hou Chao	
Manufacturer	Dongguan YX Pet Electronic Technology Co., Ltd.	Brand	(
Type and Specification	YPD-X001	Quantity of Sample	1Set (2 PCS)	
Date of Production	(P*	State of Sample	Machine	
Batch Number		Packing of Sample	In box	
Sample Picture			. O	
Sample Picture	 GB/T 18801-2015 Air cleaner GB/T 18204.2-2014 Examination meth pollutants 8.1 Indophenol blue spectrr GB 11742-1989 Standard method for h air of residential areas-Methylene blue <technical disinfection="" for="" standard="">test</technical> 	ophotometry ygienic examination of spectrophoto metric me	`hydrogen sulfide in ethod	
	 GB/T 18204.2-2014 Examination meth pollutants 8.1 Indophenol blue spectre GB 11742-1989 Standard method for h air of residential areas-Methylene blue <technical disinfection="" for="" standard=""></technical> 	ophotometry ygienic examination of spectrophoto metric me 2002-2.1.3 Air disinfec Sulfide)	`hydrogen sulfide in ethod	

To be continued

NI IN

TEST REPORT

Date Received: Nov. 20, 2019 Date Analyzed: Nov. 26, 2019

Method for testing gaseous pollutant removal:

- 1. Test Conditions
 - 1) Environment temperature: (25 ± 2) °C
 - 2) Environment humidity: (50 ± 10) %RH.
- 2. Test Equipment
 - Test chamber (1 m³), constant current atmospheric sampler, UV-VIS spectrophotometer.
 - Operation Conditions of the Machine
 - Set the switch to position "The highest gear".
- 4. Test Procedure

3.

- 1) Place the air cleaner to be tested in the chamber according to the requirements of standard and set the air cleaner controls to the conditions for test. Test for proper operation, then shut off with switch external to test chamber.
- 2) Using the chamber HEPA filter, allow the test chamber air to clean until the background pollutants reaches a level. Simultaneously operate the environment control devices until the room conditions (temperature and RH) reach a specified state. Turn off the chamber environmental control system (HEPA filter and humidifiers).
- 3) A certain amount of gaseous pollutant is added into the chamber using the gaseous pollutant generator. After the initial concentration reaches the requirements of standards, close the generator.
- 4) Mix the gaseous pollutant for 10 min, then turn off ceiling mixing fan.
- 5) Wait for fan to stop, the initial concentration of sample is gathered.
- 6) Turn on air cleaner. The sample is collected after 60 min.
- 7) According to the step 1) \sim 6), turn off air cleaner, test the natural decay.
- 5. Computational formula

Natural decay rate
$$N_t'(\%) = \frac{C_0 - C_t}{C_0} \times 100$$

Where: $C_0' =$ the original concentration of control group; $C_t' =$ the final concentration of control group

Total decay rate $N_t(\%) = \frac{C_0 - C_t}{C_0} \times 100$

Where: C_0 = the original concentration of test group; C_t = the final concentration of test group

Removal rate
$$K_{t}(\%) = \frac{C_{0} \times (1 - N_{t}) - C_{t}}{C_{0} \times (1 - N_{t})} \times 100$$

		Test Time (min)	Cor	ntrol group	Test	Removal	
Number of Sample	Pollutant		Concentrati on C' (mg/m ³)	Natural decay rate $N_t^{'}$ (%)	Concentration C (mg/m ³)	Total decay rate N_t (%)	rate K_t (%)
KJ20192583-1 –	Ammonia	0	2.13	- 0	2.07	<u> </u>	
		60	2.04	4.2	1.18	43.0	40.5
	Hydrogen Sulfide	0	1.09		1.05		<u> </u>
		60	1.04	4.6	0.68	35.2	32.1

*****To be continued*****

TEST REPORT

Date Received: Nov. 20, 2019 Date Analyzed: Nov. 26, 2019

Method for Testing Air Disinfection (Laboratory Test):

- 1. Test Equipments
 - 1) Test microorganism: Staphylococcus albus
 - 2) Microbial aerosol generator: TK-3
 - 3) Culture media: NA
 - 4) Sampling equipment: Liquid impingement sampler
- 2. Test Conditions
 - 1) The volume of the test chamber: 1 m^3
 - 2) Environment temperature: (20~25) °C
 - 3) Environment humidity: (50~70) % RH
- 3. Operation Conditions of the Machine
- Set the switch to position "The highest gear".
- 4. Test Procedures
 - Get a bacteria slant culture (4~7 generation) which is incubated at 37 °C for 24 h, wash the culture from this slant with 10 mL NB, filter the liquid culture by aseptic cotton buds, and dilute this inoculums with NB as appropriate.
 - 2) The equipments are placed in the test chambers respectively, close the door, and open the HEPA filter. Simultaneously operate the environmental control devices until the experimental cabin temperature to be (20~25) °C, relative humidity to be (50~70)%RH, Turn off the chamber environmental control system.
 - 3) Release microbial aerosol: turn on the microbial aerosol generator, then turn on the ceiling fan, turn off the fan after 5 min, and let stand for 5 min.
 - 4) Original Bacteria aerosols collected by liquid impingement sampler.
 - 5) The test group started the air cleaner and sampled after 60 min of action, and the control group also sampled in the corresponding time period.
 - 6) Choose 2 NA plates (the same batch) as the negative control, and culture them on the same condition with the samples.
 - 7) Run the test three times.
- 5. Computational Formula

Natural decay rate $N_t(\%) = \frac{V_0 - V_t}{V_0} \times 100$

Where: V_0 = Original Bacteria Count of Control group; V_t = Bacteria Count after Treatment of Control group.

Killing Rate
$$K_t(\%) = \frac{V_1 \times (1 - N_t) - V_2}{V_1 \times (1 - N_t)} \times 100$$

Where: V_1 = Original Bacteria Count of test group; V_2 = Bacteria Count after Treatment of test group. *****To be continued*****

TEST REPORT

Date Received: Nov. 20, 2019 Date Analyzed: Nov. 26, 2019

		Test Time (min)		Control Group			Test Group		
Number of Sample	Test Bacteria		Test Number	Original Bacteria Count V_0 (cfu/m ³)	Bacteria Count after Treatment V_t (cfu/m ³)	Natural Decay Rate N_t (%)	Original Bacteria Count V_1 (cfu/m ³)	Bacteria Count after Treatment V_2 (cfu/m ³)	- Killing Rate K_t (%)
	R		1	2.82×10 ⁶	2.08×10 ⁶	26.24	3.62×10 ⁶	3.20×10 ²	99.99
KJ20192583-1	Staphylococcus albus	60	2	2.05×10 ⁶	1.57×10 ⁶	23.41	3.87×10 ⁶	3.20×10 ²	99.99
			3	2.88×10 ⁶	2.24×10^{6}	22.22	3.10×10 ⁶	3.20×10 ²	99.99

Note: The negative control group was sterile growth.

Checker-

田

Issuer

Test results

End of report

Date Reported

Editor

Statements

1. The report would be invalid under the following conditions: altered, added, deleted, copied, without the special seal for inspection or signatures by approver.

2. For the received sample, the sample information in the report is claimed by the applicant, the inspection unit is not responsible for its authenticity. The report is responsibility for the received sample only.

3. If there is any objection to the inspection report, it should be presented to the inspection unit within 15 working days from the issuance date, otherwise the report shall be deemed as having been accepted. Microbiological item is not subjected to retest.

4. The report and the name of the inspection unit shall not be used for product labels, advertisements, awards and merchandise publicity.

5. The items marked with "*" in the report are not accredited by CNAS or CMA, The items marked with "[#]" are accredited by CNAS, The items marked with "⁺" are accredited by CMA.
6. The test data and results of items which are not accredited by CMA, only used as scientific research, teaching or internal quality control.

7. Any ambiguity by the language which used in the report, the Chinese shall prevail.

Contact Address, NO.1Jiantashan Road, Huangpu District, Guangzhou City, Guangdong Province Test Address, (only fill in when it's different from the contact address) Postal Code, 510663 Tel., (8620)61302671 URL, http://www.ggtest.com.cn